Pre-Calculus 30

Chapter 2: Radical Functions Review

Name: \qquad

1. Write the equation of a radical function that would result by applying each set of transformations to the graph of $\mathrm{Vf}(\mathrm{x})$
a) vertical stretch by a factor of 3 , and horizontal stretch by a factor of 2
b) horizontal reflection in the y-axis, translation up 3 units, and translation left 2 units
c) vertical reflection in the x-axis, horizontal stretch by a factor of $\frac{1}{3}$, and translation down 7 units
d) vertical stretch by a factor of 5 , horizontal stretch by a factor of 0.25 , and translation right 6 units
2. Sketch the graph of the following function using transformations.

$$
y-5=\sqrt{2(x+3)}
$$

3. State the domain and range of each function.
a) $y=\sqrt{-x}-4$
b) $y=4 \sqrt{x-4}$
c) $y-4=-\sqrt{x-4}$
d) $y=-\sqrt{4 x}$
4. For each function, write an equation of a radical function of the form $y=a \sqrt{b(x-h)}+k$.
a)

b)

c)

5. Explain how to transform the graph of $y=\sqrt{x}$ to obtain the graph of each function.
a) $y=\sqrt{2 x-6}+5$
b) $y-7=\sqrt{5-x}$
6. Determine the domains and ranges of each pair of functions. Explain why the domains and ranges differ.
a) $y=x+5, y=\sqrt{x+5}$
b) $y=x^{2}-9, y=\sqrt{x^{2}-9}$
7. Using the graph of $y=f(x)$, sketch the graph of $y=\sqrt{f(x)}$.

8. Solve.
a) $x+3=\sqrt{2 x^{2}-7}$
b) $x=\sqrt{x+10}+2$
9. The radius, r, of a sphere is related to the surface area, A, by the equation $r=\frac{1}{2} \sqrt{\frac{A}{\pi}}$.
a) The surface area of a baseball is about $172 \mathrm{~cm}^{2}$. Find the radius of a baseball, to the nearest tenth of a centimetre.
b) The radius of a tennis ball is about 3.3 cm . Find the surface area, to the nearest square centimetre.
10. Solve.
$\sqrt{x+\sqrt{x-2}}=2$

