Chapter 1: Outcome 30.7/8 Review

Level 2

1. Given the graph of the function $y=f(x)$, sketch the graph of each transformed function.

a) $y=f(x)+3$

b) $h(x)=f(x+1)$

c) $y=f(x-2)-1$
2. Using the graph below, graph each transformed function

a) $y=f(-x)$
b) $y=1 / 2 f(x)$
c) $y=f(2 x)$
3. Describe the transformation that can be applied to the graph of $f(x)$ to obtain the graph of the transformed function. State the values of a, b, h and k in $y=a f(b(x-h)+k$
a) $y=f(x-5)+2$
b) $y=f(3 x)-5$
c) $y=-f(x+2)$
d) $y=4 f(-x)$
e) $y=-2 f(x)$
f) $y=f(4(x-3))$
g) $y=5 f(-2 x)+4$
4. Determine the equation of the inverse of each function below algebraically.
a) $f(x)=3 x-6$
b) $f(x)=\frac{1}{3}(x+12)$
c) $f(x)=x^{2}-7$
d) $y=(x-5)^{2}-9$
5. Graph each function and its inverse on the same grid.
a) $y=x^{2}$
b) $y=|x|$

Level 3
6. For each function pair below, state how $f(x)$ was transformed to create $g(x)$ in the form of $g(x)=a f(b(x-h)+k$
a)

b)

c)

d)

e)

7. Write the equation for each transformation of $y=x^{2}$ in the form $y=a f(b(x-h))+k$.
a) a vertical stretch by a factor of 3 , reflected in the y-axis, and translated 3 units left and 2 units down
b) a horizontal stretch by a factor of 2 , reflected in the x-axis, and translated 7 units up
c) a horizontal stretch by a factor of $\frac{1}{4}$, translated 5 units right and 1 unit down
d) a vertical stretch by a factor of $\frac{1}{3}$, a horizontal stretch by a factor of $\frac{1}{2}$, and reflected in the x-axis
8. Here is the graph of $y=f(x)$.
a) On the coordinate plane provided, sketch and label its image after a vertical stretch by a factor of 3 , and a translation of 4 units left and 2 units down.

9. If the x-intercept of the graph of $y=f(x)$ is ($a, 0$) and the y-intercept is ($0, b$), determine the x-intercept and y-intercept after the following transformations of the graph.
a) $y=3 f(x-7)+2$
b) $y=f(-0.25 x)-7$
c) $y+3=4 f(x+10)$
d) $y=-f(2 x)-6$

Level 4.
10. Determine the equation of the inverse of each function below.
a) $f(x)=-6 x+5$
b) $f(x)=\frac{x-3}{8}$
c) $f(x)=(x-1)^{2}-2$
11. Using $f(x)=x^{2}$, graphing $y=-4 f(2 x-6)+3$

12. Copy each graph of $y=f(x)$. Then, sketch the graph of its inverse, $x=f(y)$. Determine whether the inverse is a function. If the inverse is not a function, restrict the domain of $f(x)$ so $f(x)^{-1}$ is a function

a)

b)

