Name:

Level 2

Determine whether a relation is a function.

- From a table of values: each x value has to be different. If any x value repeats, the relation is NOT a function.
- From a set of ordered pairs: each x value has to be different. If any x value repeats, the relation is NOT a function
- From a graph: use the vertical line test. If any vertical line intersects the graph in more than one place the relation is NOT a function.

1. For each relation below, state whether it is a function (write yes or no, do not leave blank)
a)
b)
c)
d)

e) $\quad\{(4,2),(3,0),(2,-2),(1,-4)\}$
f) $\quad\{(1,5),(-1,4),(1,3),(-1,2)\}$

State the domain and range from discrete data.

- Domain is the set of possible x values. When listing the domain of discrete data, be sure to use $\}$ and separate each value with a comma (,). If a domain value repeats, you only need to list it once in your set.
- Range is the set of possible y values. When listing the range of discrete data, be sure to use $\}$ and separate each value with a comma (,). If a range value repeats, you only need to list it once in your set.

Example: State the domain and range of the following:

x	Y
-3	4
-2	5
-1	6
0	5
1	7

The domain is the set of the x values and you list it as: Domain: $\{-3,-2,-1,0,1\}$
The range is the set of the y values and you list it as: Range: $\{4,5,6,7\}$ Notice we don't list the value of 5 twice.
2. State the domain and range of the following:
a)

X	Y
3	2
6	3
9	4
12	5
15	6

b)

X	Y
2	4
3	5
2	6
3	7

Level 3

I can match a graph to its given situation
3. Gail leaves the house for her morning jog. She stops for a quick drink, then continues jogging before stopping again to chat with a friend. She then jogs back home. Which graph best represents Gail's run?
a.

c.

b.

d.

I can determine the domain and range of any relation

- Domain: Find the "left" most point on the graph. The x value of this point is your starting point for your domain. If there is not a "left" most point and the graph continues to the left, your starting point is $-\infty$. Next find the "right" most point on the graph. The x value of this point is your ending point for your domain. If there is not a "right" most point and the graph continues to the right, your ending point is ∞. You will either use [or (brackets. You use [if the point is included - if the point is shaded in. You use (if the point is not included - if the point is open or if it continues to infinity.
- Range: Find the "lowest" point on the graph. The y value of this point is your starting point for your range. If there is not a "lowest" point and the graph continues down, your starting point is $-\infty$. Next find the "highest" point on the graph. The y value of this point is your ending point for your
range. If there is not a "highest" point and the graph continues up, your ending point is ∞. You will either use [or (brackets. You use [if the point is included - if the point is shaded in. You use (if the point is not included - if the point is open or if it continues to infinity.

Example

Determine the domain and range of the following:

- Find the domain:

Step 1: Look for the x value of the left most point. This is found at $x=-6$. This is an open dot, so we will use (.
Step 2: Look for the x value of the right most point. This is found at $x=6$. This is a shaded/closed dot, so we will use].
Step 3: Write the domain: $(-6,6]$

Step 1: Look for the y value of the lowest point. This is found at $y=-4$. This is a shaded/closed dot, so we will use [.
Step 2: Look for the y value of the highest point. This is found at $y=7$. This is an open dot, so we will use).
Step 3: Write the range: $[-4,7)$
4. Determine the domain and range of each of the following:

Example

Determine the domain and range of the following:

- Find the domain

Step 1: Look for the x value of the left most point. This is found at $x=-4$. This is a shaded/closed dot, so we will use [.
Step 2: Look for the x value of the right most point. There is an arrow, which means the graph continues right towards ∞. We will use).
Step 3: Write the domain: $[-4, \infty)$

- Find the range

Step 1: Look for the y value of the lowest point. This is found at $y=-4$. This is a shaded/closed dot, so we will use [.
Step 2: Look for the y value of the highest point. There is an arrow, which means the graph continues upwards towards ∞. We will use).

Step 3: Write the range: $[-4, \infty)$
5. Determine the domain and range

