Outcome 3B Review

Level 2

The formula for determining the surface area of a cylinder is $2 \pi r^{2}+2 \pi r h$ where r is the radius of the circle and h is the height of the cylinder.

Example: Determine the surface are of the cylinder
The radius is 4 cm and the height is 12 cm
$2 \pi r^{2}+2 \pi r h$
$2 \pi(4)^{2}+2 \pi(4)(12)$
$2 \pi(16)+96 \pi$

$32 \pi+96 \pi \quad$ (use either the π button on your calculator or 3.14. Answers will vary slightly)
$100.5309649+301.5928947$ (this answer used the π button on the calculator)
402.1238596

Or $402.12 \mathrm{~cm}^{2}$

Practice: Determine the surface area of the cylinders
a)

b)

The volume of a right pyramid is $\frac{1}{3} l w h$

Example:

Determine the volume of the following:
The length is 10 cm , the width is 7 cm , and The height is 12 cm .

$V=\frac{1}{3} l w h$
$V=\frac{1}{3}(10)(7)(12)$
$V=\frac{1}{3}(840) \quad$ At this point you can just divide 840 by 3 to get your answer.
$V=280 \mathrm{~cm}^{3}$

Practice:

Determine the volume of the following:
a)

b)

Level 3

The formula to determine the volume of a cone is $V=\frac{1}{3} \pi r^{2} h$ where r is the radius of the circle and h is the height of the cone.

Example: Determine the volume of the cone

The radius is 8 cm , but the height that we need is NOT 14 cm .
The 14 cm is the slant height. We need to use Pythagorean theorem To determine the height of the cone. The hypotenuse of the right Triangle is 14 cm , one leg is 8 cm and the missing side is what we are looking For.
$a^{2}+b^{2}=c^{2}$
$8^{2}+b^{2}=14^{2}$
$64+b^{2}=196$
$b^{2}=132 \quad$ Subtract 196-64
$b=\sqrt{132} \quad$ Take the square root to solve for b
$b=11.5$

Now we know the height is 11.5 cm and we can find the volume
$V=\frac{1}{3} \pi r^{2} h$
$V=\frac{1}{3} \pi(8)^{2}(11.5)$
$V=\frac{1}{3} \pi(64)(11.5) \quad$ At this point you can use the π button on your calculator or use 3.14. Answers will vary.
$V=\frac{1}{3}(2312.212193) \quad$ In this one the π button on the calculator was used.
$V=770.74 \mathrm{~cm}^{3}$
Practice: Determine the volume of the cones
a)

b)

The formula to determine the surface area of a cone is $\pi r s+\pi r^{2}$ where r is the radius of the circle and s is the slant height of the cone.

Example: Determine the surface area of the following cone

The diameter is given as 8 m , to determine the radius You need to divide the diameter by 2. The radius is 4 m and the slant height is 10 m .
$\pi r s+\pi r^{2}$
$\pi(4)(10)+\pi(4)^{2}$
$\pi(40)+\pi(16)$
$125.6637061+50.26548246$

$175.93 \mathrm{~m}^{2}$

How would this change if there was no floor of the cone?
You would not have to find the surface area of the circle; you would only find $\pi r s$
The surface area would then be $125.66 \mathrm{~m}^{2}$.
Practice: i) Determine the surface area of the following cones
ii) Determine the surface area of the following cones if there is no "floor" to the cone.
a)

b)

