Outcome 10 Review - Foundations and Pre-Calculus 10

Example: Use the graph to determine the solution to the linear system. Is the solution exact or approximate?
a)

b)

Solution:

The solultion to a linear system is the point where the two lines intersect.
a) $(-2,-1)$ is exact
b) (2.1,-.5) is approximate because we estimated the coordinates.

1. Use the graph to determine the solution to the linear system. Is the solution exact or approximate.
a)

b)

Example:

Is each given point a solution to the system of linear Equations?

$$
\begin{aligned}
& x-2 y=6 \\
& x+6 y=22
\end{aligned}
$$

a) $(2,10)$

To determine if $(\mathbf{2}, \mathbf{1 0})$ is a solution substitute $\mathbf{x = 2}$ and $\mathbf{y}=\mathbf{1 0}$ into both equations. It must work in both in order to be a solution.
$x-2 y=6$
(2) $-2(10)=6$
$2-20=6$
$x+6 y=22$
$-18 \neq 6$
$2+60=22$
$(2,10)$ is not a solution
b) $(10,2)$
$x-2 y=6$
$x+6 y=22$
$(10)-2(2)=6$
$(10)+6(2)=22$
$10-4=6$
$10+12=22$
$6=6$
$22=22$

Since (10,2)works in both equations it is the solution.
2. Is each given point a solution to the system of linear equations?

$$
\begin{gathered}
x+4 y=17 \\
2 x-y=7
\end{gathered}
$$

a) $(-5,3)$
b) $(5,3)$

Example:

Solve the following system of linear equations graphically.

$$
\begin{aligned}
& y=3 x-7 \\
& y=-x+9
\end{aligned}
$$

Use the skills that you learned for graphing from outcome 8 bb to graph both lines on the same coordinate plane. Then look for the point of intersection.

The solution is $(4,5)$

3. Solve the following systems of equations graphically.
a) $4 x-y=6$
b) $x-y=-1$
$x+y=5$

Example

Solve by substitution.

$$
\begin{gathered}
x+4 y=17 \\
2 x-y=7
\end{gathered}
$$

In order to solve by substitution isolate either x or y in one of your equations.

$$
\begin{aligned}
x+4 y & =17 \\
x+4 y-4 y & =17-4 y \\
x=17 & -4 y
\end{aligned}
$$

Now substitute this into the other equation

$$
\begin{gathered}
2 x-y=7 \\
2(17-4 y)-y=7 \\
34-8 y-y=7 \\
34-9 y=7 \\
34-34-9 y=7-34 \\
-9 y=-27 \\
\frac{-9 y}{-9}=\frac{-27}{-9} \\
y=3
\end{gathered}
$$

Now substitute $y=3$ in to the equation to find x.

$$
\begin{gathered}
2 x-y=7 \\
2 x-(3)=7 \\
2 x-3+3=7+3 \\
2 x=10 \\
x=5
\end{gathered}
$$

The solution is $(5,3)$
4. Solve the following systems by substitution.
a) $y=x+2$
b) $x-2 y=10$
$3 x+4 y=1$

$$
x+5 y=-4
$$

c) $x+y=-5$
d) $4 x+y=-5$
$x+3 y=-15$
$2 x+3 y=5$

Example:

Solve by Elimination.

$$
\begin{gathered}
2 x+7 y=13 \\
3 x-7 y=2
\end{gathered}
$$

Make sure that the coeficients in front of x or y are the same. Then add or subtract to eliminate that variable. So in this case if we add the two equations we will eliminate y.

$$
\begin{gathered}
2 x+7 y=13 \\
3 x-7 y=2 \\
5 x=15 \\
x=3
\end{gathered}
$$

Now substitute into one of the original equations to find y.

$$
\begin{gathered}
2 x+7 y=13 \\
2(3)+7 y=13 \\
6+7 y=13 \\
7 y=7 \\
y=1
\end{gathered}
$$

The solution is $(3,1)$

Example:

Solve by elimination.

$$
\begin{gathered}
2 x+5 y=16 \\
x-y=1
\end{gathered}
$$

When the variables do not have equal coefficients, we need to multply an entire equation by a number to make the coefficients equal. In this question we will multiply the second equation by 2.

$$
\begin{gathered}
2 \times(x-y=1) \\
2 x-2 y=2
\end{gathered}
$$

Now rewrite the equations making sure that the variables line up vertically.

$$
\begin{gathered}
2 x+5 y=16 \\
2 x-2 y=2
\end{gathered}
$$

In order to eliminate the variable x, we will need to subtract the two equations.

$$
\begin{gathered}
2 x+5 y=16 \\
2 x-2 y=2 \\
7 y=14 \\
y=2
\end{gathered}
$$

Now substitute $y=2$ back into either equation to find x.

$$
\begin{gathered}
2 x+5 y=16 \\
2 x+5(2)=16 \\
2 x+10=16 \\
2 x=6 \\
x=3
\end{gathered}
$$

The solution is $(3,2)$
5. Solve by elimination.
a) $2 x-3 y=7$
$2 x+y=3$
b) $-3 x+y=5$
$4 x-y=-8$
c) $4 x-3 y=-13$ $-2 x+2 y=8$
d) $4 x-3 y=9$
$2 x-5 y=1$
6. Solve using either substitution or elimination.
a) $x+2 y=9$
$x=2 y-3$
b) $2 x+3 y=11$
$x-3 y=-17$
c) $-2 x+y=-14$
$4 x+3 y=-2$
d) $4 x-y=-7$
$2 x+3 y=-21$

Example:

A system of linear equations can have zero, one, or an infinite number of solutions. In order to know how many solutions there are, we need to compare the slopes and y intercepts of each equation.

Zero solutions

slopes equal
y intercepts different

One Solution

slopes different

Infinite solutions

slopes equal y intercepts equal

How many solutions does the follow system have?
a) $6 x-y=1$
b) $8 x-y=13$
c) $5 y+x-10=0$
$y=6 x+1$
$x-8 y=13$
$y=-\frac{1}{5} x+2$

In order to compare slopes and y intercepts, rewrite each equation in slope intercept form.
a) $6 x-y=1$ rewrite as $y=6 x-1$ compare to $y=6 x+1$

Slopes are the same, but y intercepts are different. This means the lines are parallel and the system has no solutions.
b) $8 x-y=13$ rewrite as $y=8 x-13$.
$x-8 y=13$ rewrite as $y=\frac{1}{8} x-\frac{13}{8}$. Slopes are different, so there is one solution.
c) $5 y+x-10=0$ rewrite as $y=-\frac{1}{5} x+2$. Compare to $y=-\frac{1}{5} x+2$. Slopes and y intercept are the same, so there are an infinite number of solutions.
7. Determine whether the system has zero, one or an infinite number of solutions.
a) $x=2 y-5$
b) $6 x-y=5$
c) $2 x-5 y=10$
$\mathrm{y}=\frac{1}{2} \mathrm{x}+\frac{5}{2}$
$\mathrm{y}=6 \mathrm{x}+7$
$3 \mathrm{x}-4 \mathrm{y}=24$

